File Information

File: 05-lr/acl_arc_1_sum/cleansed_text/xml_by_section/abstr/95/p95-1025_abstr.xml

Size: 800 bytes

Last Modified: 2025-10-06 13:48:31

<?xml version="1.0" standalone="yes"?>
<Paper uid="P95-1025">
  <Title>Statistical Sense Disambiguation with Relatively Small Corpora Using Dictionary Definitions</Title>
  <Section position="1" start_page="0" end_page="0" type="abstr">
    <SectionTitle>
Abstract
</SectionTitle>
    <Paragraph position="0"> Corpus-based sense disambiguation methods, like most other statistical NLP approaches, suffer from the problem of data sparseness. In this paper, we describe an approach which overcomes this problem using dictionary definitions. Using the definition-based conceptual co-occurrence data collected from the relatively small Brown corpus, our sense disambiguation system achieves an average accuracy comparable to human performance given the same contextual information.</Paragraph>
  </Section>
class="xml-element"></Paper>
Download Original XML