File Information

File: 05-lr/acl_arc_1_sum/cleansed_text/xml_by_section/metho/94/c94-2155_metho.xml

Size: 19,151 bytes

Last Modified: 2025-10-06 14:13:42

<?xml version="1.0" standalone="yes"?>
<Paper uid="C94-2155">
  <Title>A CLASSIFICATION METHOI) FOR JAPANESE SIGNS USING MANUAL MOTION DESCRIPTIONS</Title>
  <Section position="1" start_page="0" end_page="0" type="metho">
    <SectionTitle>
A CLASSIFICATION METHOI) FOR JAPANESE SIGNS
USING MANUAL MOTION DESCRIPTIONS
</SectionTitle>
    <Paragraph position="0"> Ishii-machi, Utsnnomiya, 321, JAPAN atlachi@gnrn .infm'.n t sm~mniyn- u.a('...i I) SUMMARY In this paper, wc prol~OSe a &lt;:lassili&lt;'ation method for sigus in ./ape&lt;nest ,b'ig. I)(tngutqlC (JSI,). The metho&lt;l is l&gt;as&lt;'d on I:\],c similaril,y I&gt;el,wceun n+eH+nal .loli+Jtz dc.+i:rilJlion.+(M M \[)s) M' signs. M M l/s a~c the verbal dcs&lt;:ripti&lt;nm of signs, The measure (ff similarily I&gt;ctw('en MM I)s is derivc&lt;l from ihcir h,n#cst common subsc'quc+~c&lt; (I,C,'-;) of MM I)s. liy (:Oral)u/inK fcal.urc vc(;\[ors of u propcrti(~s fr&lt;)m a. linile sc.i of MM1)s and i)hUting them in the n-dimcnslonal I';u&lt;:lidcau space, the similarity between signs can he r,'g;u'dcd as a.n internal angle I~el,',vcen Ihc vectors. '\['he result, of mH' experimenl is I,}l~I, I}le signili&lt;:anl sign families can be obt;fin(~d,</Paragraph>
  </Section>
  <Section position="2" start_page="0" end_page="961" type="metho">
    <SectionTitle>
I. INTRODUCTION
</SectionTitle>
    <Paragraph position="0"> Stokoe (1960) is I.he lirsl, linguist I.o deal with the Sl;I;llC\[,llre Of signs in l.he S;lllle way as I,ha(, of oral words. lie uol:ed t.haI. I.here were three kinds of i~aramet.&lt;!rs in de~cril&gt;ing l, he sigu iu A mcri&lt;a.,/ig, /..n.&lt;/u(tgc (ASI.) a.~ follows: ( I ) t, hc Ioca, l,i&lt;m of qle signs rclal,iw~ I,o &lt;,he body, (21) IJ~e haIM-shal)e &lt;&gt;f hau&lt;ls involw~d in arl:iclda.l.i,g the sign a.nd, (3) the m&lt;&gt;v&lt;!lucul, of hands. Oi.her linguists (li'rie&lt;hna.n 1977, Battis&lt;&gt;u 1,q7;';) ha.vc claimed &lt;,hal, a follr|,\]l paralneLer is ol&gt;lip;al.ory, thai, is, the spal.ial orieul.al.i&lt;m of the hamls rela.l:ive lo l.he body. In ./(tpane's~: .Ni/In l.anguaff((JSI,), a, few liuguisl,,~ ('l'a.nolcami 1979, Kanda 1982) took I:he similar apln'oaches, Thus, we m'ed I.&lt;&gt; ,specify th&lt;, Ioc&lt;dio,, h(utd-.~hap&lt;~ movemcnl and ori6n, l(i.lio~ of lilt \[muds t&lt;&gt; describe t.he sign. Furthermore, il. is int.eresting 1.1&gt; u&lt;)l,c t.hal, a change in &lt;rely one of l,I~&lt;~ signilicam elem&lt;mts iu handshape, local.ion, orient.ati&lt;m and movement often results iu changing i.h&lt;~ meauiug; (ex., antonym, synonym). The uotat.i&lt;&gt;n sysl.ems pr&lt;q~osed I&gt;y liuguisl.s &lt;:au pr&lt;wi&lt;h&amp;quot; a very detailed aud broader reprcsmllatiou I,o describe signs. It is, hmvew~r, not easy l,o l:rallsforlii l.he siga iul.o the nol.al.i&lt;m. For Mils r&lt;'as(),: it, is 1.oo &lt;&lt;)st Io col= led; a large am&lt;told, of sign data.</Paragraph>
    <Paragraph position="1"> C,msich'r, f&lt;&gt;r examph', a miuimal pair iu lhc movemcul: as shown iu l&amp;quot;iK.\].</Paragraph>
    <Paragraph position="2"> It is clea.r thai the nliIfimal pair { 'I:i\]~Y O~.nl.),q: O\[ I&amp;quot;i~ 1: The Minimal Pair of Signs (q:iJfi (a.m.), 'l:t~ (p.m.)) t~ (p,m.)/ mcaus the antonym senmnticaily a.ud repre s&lt;mts I.Iw symmetry visually. Typical sign &lt;licti&lt;niary c&lt;msist.s of ilhlstral.ions &lt;,' l)hot,ogralflls aim t.h&lt;&amp;quot; wM)ai descril)l.i&lt;m.',, we called the descripti&lt;ms m.an,ual mot~o.n dc.scriplions (MM I)s) represented as l;exI, written in nat= ural language.</Paragraph>
    <Paragraph position="3"> It can be considered thai; a. MMI) represents iul'of llHll,iOII exl,r~qc|,cd frOlll ~1, s0ri0,,s of the l\[lallllal /noLiotts of I.hc sign. 11. is not &lt;lilIicult to find the symmetry o\[' signs by the c(mt.rast t&gt;ef.ween tw&lt;&gt; MMI)s. lV&lt;u ' c'xa.ltl-I&gt;le, the toni.fast &lt;)t' wor&lt;ls '~i (right) aml ~F= (left,) can I&gt;c ol)I.ained \['r&lt;mL c(mll)ariug MMI)s of-'t:~ (a.m.) wil.h /l: ~2 (l&gt;.m.) a.~ foll&lt;wvs.</Paragraph>
    <Paragraph position="4"> .~if-(I)X.~.'~+~ ,l'+f~+ ~'/::Cc&amp;quot;~C/ia~,l,'~::+,'C'C, f ~::fl19 g:@ We d&lt;!,~&lt;:rihe a. classificali&lt;m reel;hod for sigu,s using mat.h&lt;~nlatical tcchlfiqm.s ha,sod on I.he similarity b&lt;&amp;quot; l,ween M M I)s.</Paragraph>
  </Section>
  <Section position="3" start_page="961" end_page="962" type="metho">
    <SectionTitle>
2. DATA STRUCTLTRES FOR MMDS
</SectionTitle>
    <Paragraph position="0"> This section descril)cs l,hc rema, rlC/ablc characteristics of MMI) and a tra.nsfc, rmat.ion met.hod ddvd from l, hetn. The method i~icans l.hat MMI)s can he tra.usfornted into I,he n-dhnel~sio\]tal /'eal:ure vectors.</Paragraph>
    <Section position="1" start_page="961" end_page="961" type="sub_section">
      <SectionTitle>
2.1 Tim Re.markat)le Characteristics of MMDs
</SectionTitle>
      <Paragraph position="0"> MMI)s nwan a kin,.I of the verl)a.l d(,scril)lions of the sigti, which are written in Japanese hmgiuagc' and has remarkal)le characterist.ics as follows: * MM Its have tnot'e c(inslraint:s ,m synt,aclic pal,l,erHs alld wi)rds Lhall getteral ,\]al)alt(!s( + Solll,OliCl~s, Ill or, her words, t;here are some I,:hM ()f synLacl,ic pal,terns in MMDs, ~, \[n Japimese, syn(inytus at0 often marl,aM wit.h t,h(' COtlltl'lOtl ~'a,tzjl-cllara(:l,l~i!s. F()r exa, lllDle , each set, of</Paragraph>
      <Paragraph position="2"> groups ;it'('. COllS\[,\]'llC(,(~d by \[;ll(?lll such aS</Paragraph>
      <Paragraph position="4"> Thus, the combitmtion (if ka,:ji-charact;ers means semantic concatcqla.t.iotl. Sat o (1992) has als(t 1)oiut.d out them in his papt'r.</Paragraph>
    </Section>
    <Section position="2" start_page="961" end_page="962" type="sub_section">
      <SectionTitle>
2.2 Transfi}rn).atioll into F,tmt'ure Vectors
</SectionTitle>
      <Paragraph position="0"> To represcttt the (list.ril)ution of words ma.thetnatically, it is convenient, to considered as poh++t.s in the .-dimensional Euclidean Sl&gt;;ice. The coordinates of poitfl.s can t)e given as the ~'&gt;,./imc'usioual fl~ature vectors. Then, an infernal a.ngle llel.'.,vc:en the veer.ors can I&gt;e considered as tim similarity t)ctwecll tJle worlls. In this case, l)rol)ez'ties of the feature vectors need t.o tuany poinl.s of view. (i.e., word frequency, part. of specch, CO-O(XqlI'I'OIIC(t I'Olal, iC)q, ~ltl(\[ SO (/It). \]ti l)al,t,(',rlt recogni-I:ious, the sam( + al)l)rC, a ches I tave nm(\[(~ use of recognizing l)ictures and let, tl~+rs Therefore, we ,%+;o seh'cl t;his al&gt;prr)ach which is sigt~.s art' F, lott:(~d in the ,-(limensiotutl li',ucli(leau SlmCC.. I&amp;quot;eal.url' vrctors &lt;:ah hc ()l)tained hy cotlstru(:ting a Ill\]ire stal.e a.ut.omal.on a.ccel)ting MM l)s as fc, llc, ws.</Paragraph>
      <Paragraph position="1"> It. is well known that: limt.e state aul.(m,ata rec(tg\]lize tinite st.a.te la.ngua.ges (see Aho,A.V., el; al. 197'1). If a class of i)alt.erns can I,e de.scribed in a liuite st.a,.e l,~l, llgtl;I,Ir0, ;I \[\[tPSil;e st,aLe &amp;lll;otl'\]+l,|,Oil (:;Ill 1)C/! (X)\]ISLI'I\]CI,I'(I to recogltize MMI)s ilcscril)ed this class of l)atteruls.</Paragraph>
      <Paragraph position="2"> Exmnl)l,u.2.1 Let A=4'i~.0)g~~'\]L~ {-.I.-Y'+, I~,=,\]~!:\]~(\])~J~J'~: I-'PY'7~) and (~=iil,jr\]'=c\])/J',t:~ ~ \[lilt-J* 7+ be MM Its. The lit\]ire sl.at, e (,l'a.llSi|,iOll diagram ot' a a.ut,otua.t,otl acCC.ltting the set, of MMD is shown in Fig. 2,2.</Paragraph>
      <Paragraph position="3">  ~iT.a) I=+)+ Z., .... +&amp;quot;----~O &amp;quot; '.___t%(c) Fig '2: A \]i'inil.e Stale q'ransit.ion Diag, ia+m Then, a regular exprc'ssion derive(I from I.he al)/)ve diagra.m is shown l h0 fi)l\]owing.</Paragraph>
      <Paragraph position="4"> I!\]ach ka~C/\]~- or&amp;quot; kana- character of the almve reg\]ilar cxpressiotPS cau be considered as i)roperlies (,\]1 I;h0 J'l?;itm'e vectrors for Ishe sigr,. The feat.ur(~ vect.ors for t.ho sign derived fro\],\] MMI)s arc. shovvu iu Tal)le I.</Paragraph>
      <Paragraph position="5"> +,, \],+ ,:,:, + ++ it, +++ + ,- ,,-,,, 0,+ + A I 1 0 l 1 1 0 0 I I (~ ) 1 I 1 ) l l I 1) (J \[ l I  Thus, l.hc signs can be rcl)rcseut.cd as l~-(lhneusiotud l+eat, m'e vect,:m'+;, w}|\]ch call })e (leliued as b+/ re+tots \[0,1\].</Paragraph>
      <Paragraph position="6"> Furthermore. we can find a Mud ,:&gt;f +ynt.actic pat.t.crn</Paragraph>
      <Paragraph position="8"/>
    </Section>
  </Section>
  <Section position="4" start_page="962" end_page="966" type="metho">
    <SectionTitle>
3. SIMILARITY BETWEEN SIGNS
</SectionTitle>
    <Paragraph position="0"> This se,::|i(m describes how a situilarity t)etwe(!u signs is cotttpul.ed. To conq)ut.e sintihu'ily, we inl.ro(luc0d l\]+e Io+Ig+,sl-commo'n-sub,+cqu+ n( ( ./)+++clio, (I,(1~).</Paragraph>
    <Section position="1" start_page="962" end_page="962" type="sub_section">
      <SectionTitle>
3.1 Similarity he|;ween MMI)s
</SectionTitle>
      <Paragraph position="0"> The resull, of the I)revious ,:tiscussi(,us (:au I:,(, suln+ ularized a,q foll,::.vs: I, Similarity lml.wcen two signs ca:n I)c c(msidored as similarity hetweeu t.vvo MMI)s.</Paragraph>
      <Paragraph position="1">  2. Whc'u ,:h~.scril:,ing si~n,s matheumt.i,:ally, il, is ccmveuien(, t.o rcgar,.l t,ltc'lU as l)()ili\],s ++t' \['e,~d,llre ~,'(~(Tl,()lis iu (.lie n-dimeusi,:mal I'~uclideau .-+l&gt;aCe. The simi larity measure hetweeu l.wo signs i~ c&lt;&gt;usMered a.'-; +t,1! #tll~\]O ()f I,WO Vectors.</Paragraph>
      <Paragraph position="2"> 3. If a \[initc state aul.oumla acc(!iH.hl ~ .MMI)..+ curt he</Paragraph>
      <Paragraph position="4"> l,e(. ,I -: (~+t,+t..~ ..... (t,~) aad 11 :: (bl,l:~ ..... b,) l)o pl-dill\]CllBiOllal \['(++lllll'e Ve( t,(H':-; ()1&amp;quot; ,++;iglt~, Then, l, he Bitllilarity tt.~asure l+elv.'e,~m sigus, dcm,t,ed, hv ,&amp;quot;;(A, 1C/), cau lw delinc'd as f.lh+ws: I)l!',t&amp;quot;. l:The Shnihu'ity belweeu t&amp;quot;eal.u re \:+.&lt;:t,cm,</Paragraph>
      <Paragraph position="6"> N~,,,~&lt;,,+, IIAIF ,:~,,, t,,+ ,:,,,,u.,t,,&gt;d +,+ ,,h,, ~,.,~, .+' m l i t ~ V&lt;~(:tP+ + I' :~ l (+'r~ , I I ) ~:+~ I ~ I &gt; &lt;&amp;quot; COmlml.ed as the +tun o\[ + ,++: A bi - I iu feature ve&lt;:t.C/&gt;rs A aml H,.</Paragraph>
      <Paragraph position="7"> II,ecall t.he feature w'ctm's of TaMe 1 itt th0 last sec+ ~.~o,+. IIAII + ,.+,,, \[+,+ deliued a~ a hmgl.h ~+1' MMI) relat.ed t. w~&lt;:l,t,&amp;quot; A. In the same way, (A, II) ,::au t'.! ,:Mil,e,A a~ a leugi:h ~+1' a Io:,.:i,.,,I torn're.on sul~seque?~ce of MM l)s .'ehtted I,c&gt; vcc't.rs A and IL We shall discus.s il. h+t detail.</Paragraph>
    </Section>
    <Section position="2" start_page="962" end_page="963" type="sub_section">
      <SectionTitle>
3.2 13cmgest (~Olllll|Oll S'ul~se.qu..~m.&lt;',~
</SectionTitle>
      <Paragraph position="0"> A s,tl',scqtwuce ol + a given sl.ring is al~,y si.riug ot&gt;l,ained by delet.ittg zero m' more sylubcds from tim giveu st.ring. A Io,gcsl +o+nmov subsequcn+~ (I+(JS) c+l' t.wc, st.rings is a suhseqm+t~ce o\[' bot,h l.ha(, is a.,+; long as a.uy ol,hc?r ('O/lllllOll SIIIISCCIlII+IICC.</Paragraph>
      <Paragraph position="1"> An h('+S vnea.ns tha.t the muuher of ttlatchithg char+ ;,el.ors ccnl.~idez'iug l.he ch;m~cter uMer c&lt;m~l.raint. Ig,' examlde, fl' X = abcl;,doh and Y :: l;d+aba, then all l+(IS c.f X aud Y in fiche, and has leugth 4 as shown m Vig. 3.</Paragraph>
      <Paragraph position="2"> 't'lw othc.r l,(~S of X aml Y arc 6dab aud k+'ab, aud also haw' leltglh ,1.</Paragraph>
      <Paragraph position="4"> l&amp;quot;or a given ~equcuce .\&amp;quot; ~ xtx~...xt+ we deline IJie ith prelix of X , fur i := 0+ 1,...,/, as .\++ -- .l:j;c..+,...+:~. l;'or exanlple, if X =- abr:d+, t.hen X:+ - abe au,.l ,YC/) is the empty sequence 't'he,~, au I+CS ,A&amp;quot; A and \[.i, &lt;lou.tcu I)y L(:,~'(A, H), ca.n be cOlUlmled eIl\]ciett(,ly as the following recursiw, f,:n'ttmla u~iu~ I)yl\],+mti(&amp;quot; I&gt;r'ogi'alt~tuil~g (\['or \['url.hox dclail,~ uf h(IS, see Thomas II, et. al. 1991).</Paragraph>
      <Paragraph position="6"/>
      <Paragraph position="8"> Ot}viously, the above sinfiM\]'ily rneasurc satisties thern.</Paragraph>
    </Section>
    <Section position="3" start_page="963" end_page="964" type="sub_section">
      <SectionTitle>
3.3 An Exl,{u'inmnt
</SectionTitle>
      <Paragraph position="0"> We now show res,lll.s (}f all eXl)erin,eut, and verify t.hc situilarit.y measm'P t}el.weett signs. W(' used daLa it, The Illaslrat+d h'i.qn l)iclwnary (Maruyama 198d) for the following reasons. We ma(D use lhe sinq)le (lescripi.ion data. (1,527 entries), whM, were r{m(lered machine rea{labh&gt; dal.a. By mergin.g t.he same MMI)s, itt advauc{', 1,51/1 entries were ol)taiu('.d ~. For exatuF, le, ::}&amp;quot;~</Paragraph>
      <Paragraph position="2"> { l,msitler, for exa.mph,, parts oft,he apF, roxiumte shHilar pairs as shc, wu in T;d)le 4. A l)ah' {//J;t (daughMr), .&amp;l,  :&amp;quot; (.'~o,O} u,ea:,s l,he a.Umy., +u,d i,l:,: oil,or pair { 4!i L. ~,~' (s,'./), ~; &lt; (c'ry)} means the syu(utynl, Thlm, t, hese  The sin,ilarity of mamufl mot.ions results in the si,ll ilarity of meauing, which is a kiml of sigu rormatiw&gt; units. That is, a miuima.l pair //1:4 and ,~,f&amp;quot; have a common seiHant.ic C(}lIlI)OIl(qlI; children of parents such as a mot,ion a hand is moved the forward related to the body , ;I,II(I ;Ill hl(lividlla\] S(qll~lll|,ic COlll|&gt;o IR'nl the female or male sex such as usin A a little or thuulh finger.</Paragraph>
      <Paragraph position="3"> 'l'hcr(' are. howcvc,', a fi'w ,:XCCl)t.ions in t,hc ahow~ rule. For exanlple, each of a pair { f6'~fl~ (Yokoh(mm), i'P} C.'/.P (:-;?;'moth)} hav,~t differ&lt;'nt meanhig, lint both o\[' them are de.rived fl'Ol'll t,hc Salll(~ iconic iilOI.iOll {)\[ \[,li(? ohjecg &amp;quot;t'azors&amp;quot;. From the lauguage pragmal+ics I:,oiul,s of view, the imt',ort;ml, thiug is that a meaning of sigus dlallgeS ill various COllLOX{ just. ;-is a Ii/(Nlllilig o\[' ~1 W{}P(\] &amp;quot;sI',ring&amp;quot; chang('s iu various COllI.cxl., The pohlt we wish to, cnfl&gt;hasize is that, COIII\[}III  ilig l,hc' sittiihu'ily h(!t,w(?en MM I)s resiilis th(! sigllilicaul, iiliniliial pair of sign, Fig '1: ,qiglls of ~1:4 da.ghl(r) ai.l ,/h, J&amp;quot; (s(,t, C SS ,' &amp;quot; '' ) ~&amp;quot; O 4. A ,I,A.~ ~ 1\[ ICA 11( N ME \[ H 1)</Paragraph>
    </Section>
    <Section position="4" start_page="964" end_page="964" type="sub_section">
      <SectionTitle>
4.1 Maf.heniat;i&lt;:al N()t;ion
</SectionTitle>
      <Paragraph position="0"> For a liuil(,set X, a hilmry rclatio, h'(X,X) Ihai, is rc./le:r*l,(, ,'+y?nm+l'r+c a?/d lran.sili+,( is calh'(I all cquivalri~c&lt;' rdo/Zom For each rlctii(!nt a: lit X, we d(!filio a sol A .... which rolll,ahis all l,\]io (qOlilVlll,'. o\[ .\&amp;quot; l,hiil arl' relal,(~(I l,o .c I)y 1,11o oquival(!ilC(' i'(@ll, i(lll, \],'oriiially, A.,.-: {:,;l(.,:,y)&lt; \],'(X,)':)}.</Paragraph>
      <Paragraph position="1"> A,, is chmrly a suhsct ,:d' X. Th.:' elcilleili .r is il,sclr contained in A,. due 1,o l,lw rc~\[Ic, xivit,y of t'I,; I',~callse II, is i,r;insil,iv(! all,el S.yliilti(!l,ri(', oath rlilqtili(!r o\[ .,~:,. iS rolal,ed I,o all llie oLlicr iileiiii)Vl'S of ,4 .... This s(q A;,: is rol'erre(l I,(t ;is an t~qulvah~llCe (:lass ()\[ \]l'(.\', .\') wii, h rcsl)(Wl Io ,r. The Family ()1' all s.ch ('(i.ivah'.('(' cl.ss,~s deli.(~(I I)y I,}io r(~lal, ioll, which is ilSllally (l(.nol(M hy .\'ll(, \['l)rlllS ii l)a.rl,illOil OI1 X.</Paragraph>
    </Section>
    <Section position="5" start_page="964" end_page="965" type="sub_section">
      <SectionTitle>
4.2 A Classilicat;i&lt;m M(;t;h()d
</SectionTitle>
      <Paragraph position="0"> Wr (lcscrihc how (:hisl,erhig a giv(;u finil,e set +)f' signs iisiiig the siiiiilaril,y ill(~a.gllr(, pr()l)()s('d hi ~(!cl, ion :/, Th(' shililat'ii,,y r(,htl,iou 5,'(A, 11) satisfies Ihv \['oi\[owiilg two</Paragraph>
      <Paragraph position="2"> .b'(A, l~), howev(w, (I,:)(~su'l sal,isfy th(! Lransitiw ~ c(m dii,i(m. The., we i.t,rod.c(~ I, hc following iu(!q.alii,y,  Thus, ;t srt, of I h(&amp;quot; si~. carl h(, classili.~d .sing thu l',ariil, i(m in,.hlc(.d hy tit(&gt; eqtfivahmcc, rc.lali(n, ~/',, wii,h the apl)rol)riate thrc.,-;hohl c, ( 1 &gt; ;~&gt; 0 ).</Paragraph>
      <Paragraph position="4"> (lotmcqucul,ly, for every monot(mi('ally decreasin~ li 0 ), the k-h'vcl hierarchy ('lusl;crs in the form of a dendrogranl can hc .hl,ained as shown iN Fig 5. llowevrr, \[,O ( Oll,~i,l'll(:\[ i,h(, (\]Cllth'ogl'alll is iioi, ol|r \])l'cs011L purpo,~e. The rca,~o, is l,hal, tim shuilarity measure 5'(A, B) has a l~ml, urc ()f the curve cos ~ 0. That is, as the. simila,ril, i0~  a.re close the nmxinmm ( S(A, B) = 1 ), gains of noise factor (i.e., inflection ) can be ignored. 'l'hcreforc, The low-level clusters ( &lt; 0.5 ) are nol. necessary for our purpose. \Y=e want. t;o find the significant sign famili('s</Paragraph>
    </Section>
    <Section position="6" start_page="965" end_page="966" type="sub_section">
      <SectionTitle>
4.3 An gXl)erilnent
</SectionTitle>
      <Paragraph position="0"> To nmke discussions SilUl)lcr, wc used the sample (la.ta. of MMI)s (\]29 entries) including two key-words (chara.cl.ers) of K\] (mouth) 71 (ml, ries and ~-~ (lips) 58 entries; I)eca.us(L a. wor(I t(~. call be idmlt, itied wil.h a word 1PS71 in Ja.pa.ncse la.nguage. \Vc wanted 1.o obtain the re sull.s from oxtracl.ing sign families rathc'r than I.o obtain t.he hiera.r(:hy structure or th(! form o\[ a dendrograln.</Paragraph>
      <Paragraph position="1"> The purpose of classilications is l.o focus (m th(' mininml lmirs of signs.</Paragraph>
      <Paragraph position="2"> By merging the identical (lata I.hat. nmal,s 5'(~4, l~) = 1, 129 cntri(&gt;s a.rc merged into 101 entries. The total amount of sign pairs satisfying N(A, B) &gt;_ 0.6 are 25 p;drs, and a 3\[ x 31 similaril.y matrix is ot)i.ained. Th(m, the simila.rity ma|,rix is l.ransformcd into a (.ransil.ive lnatrix, and the cquiw:denco classes C}1.11 I)C ol)(,}liiio(l ~Is shown in Tabh&gt; 6.</Paragraph>
      <Paragraph position="3"> We classified given signs (129 cnl,rics) into 11 chlst,(&gt;rs a.nd ibund tha.I, tim la.rgesl, am(toni, of sign family is 3, 'v~ (REl))-fa.mily as Follows: 23 entries : at:: (red), g (st.r.~twl)c'rry), Jk{~ (h(redil.y), FI I1~{tl (Sundty), ,)~.PSe}g (tire), ~3.~ (('.xprc'ss), U &gt; ~&amp;quot; (~,.pp&gt;), ~r~ta~ (im)od), ;,,.t s(, o,,.</Paragraph>
      <Paragraph position="4"> This sign family has an essential common MMI3 &amp;quot;  'l?ha.t is, .;~'f/2 (hc.redily) dcrivod \[l',)lU &amp;quot;bh)c,d&amp;quot;, II Ilt'il l\] (Sltttday) deriw~d frc, ut the red UUlueric in the cahmdar, and Jg3?~ (exl)ress) derived \['rotu I.hc' red-,stamp cm the letter, and so on.</Paragraph>
      <Paragraph position="5"> Consider, flw example, a. family of sigus { +'l'?~:, &amp;quot;7 &amp;quot;-X, C_ /~ .1: 5,/;\[f:'~'? .(', i&amp;quot;~'U~ } n,eans {sall+J, Worcestc'rsa'+l.cc, p+ per, red - paper, a.sl ri?+gc+lL }+ The l'aufily has :-m essetd;ial COIIIIIIOll SCIII;IIII,ic ('()lll\])oIt(qll,, which III(?;IIIS &amp;quot;not sweet&amp;quot;relweslmled a:-+ ct'&lt;&gt;ok.iug all ,:~1' \[iitgel'S. 'l'he ,:\[ifli+retwe of a. pair( 'i'?U &amp;quot;~ (salt.y), i&amp;quot;'~U&amp;quot; (astringeul))is wh('ther t.u hc rut.at.cd ur ul&gt; and down.</Paragraph>
      <Paragraph position="7"/>
    </Section>
  </Section>
class="xml-element"></Paper>
Download Original XML